​​

Stable catalyst design for the viable activation of methane to syngas, hydrogen, and chemicals

Problem statement

Methane and light alkanes are surplus species and by-products with relatively poor economic interest. Our goal is to activate C–H σ-bond to produce hydrogen, olefins, carbon monoxide, and carbon nanofibers, following different process strategies such as oxidative coupling (for olefins), CO2 dry reforming (for syngas), cracking or catalytic decomposition (for hydrogen-free of COx and sequestrated carbon nanotubes/nanofibers), cracking/co-cracking with CO or methanol. We work on developing, synthesizing, characterizing, and testing innovative catalysts with a twist of reaction engineering concepts, looking at multi-scale implications.

We delve into the mechanistic insights of a series of in-house synthesized metal-supported heterogeneous catalysts by combining them with dynamic reactors and ab initio calculations. We explore catalysts with promoted lifetime, activity, selectivity, and heat exchange.

We investigate novel reactor designs grounded on forced dynamic (operando) fluidized-bed reactors at high pressures to amplify the kinetic information and hydrogen.

Goals

  • Develop a microkinetic-based modeling framework to analyze the catalyst performance
  • Scale the technical catalyst for its application in demanding exothermic (oxidative coupling of methane using SiC and spray drying) or fluidized-bed (catalytic decomposition of methane) conditions
  • Develop new catalytic concepts based on Ni-alloys (Ni-Fe, -Co, -Zn…)
  • Improve the catalyst structure-function correlations using in-situ, operando, and dynamic techniques and reactors
CHA2023

Related People

Related Publications

Post-Synthetic Surface Modification of Metal–Organic Frameworks and Their Potential Applications

by Figueroa-Quintero, Villalgordo-Hernández, Delgado-Marín, Narciso, Velisoju, Castaño, Gascon, Ramos-Fernandez
Small Methods Year: 2023 DOI: https://doi.org/10.1002/smtd.202201413

Abstract

Metal–organic frameworks (MOFs) are porous hybrid materials with countless potential applications. Most of these rely on their porous structure, tunable composition, and the possibility of incorporating and expanding their functions. Although functionalization of the inner surface of MOF crystals has received considerable attention in recent years, methods to functionalize selectively the outer crystal surface of MOFs are developed to a lesser extent, despite their importance. This article summarizes different types of post-synthetic modifications and possible applications of modified materials such as: catalysis, adsorption, drug delivery, mixed matrix membranes, and stabilization of porous liquids.

Keywords

OLG CO2 CHA HCE