​​

Stable catalyst design for the viable activation of methane to syngas, hydrogen, and chemicals

Problem statement

Methane and light alkanes are surplus species and by-products with relatively poor economic interest. Our goal is to activate C–H σ-bond to produce hydrogen, olefins, carbon monoxide, and carbon nanofibers, following different process strategies such as oxidative coupling (for olefins), CO2 dry reforming (for syngas), cracking or catalytic decomposition (for hydrogen-free of COx and sequestrated carbon nanotubes/nanofibers), cracking/co-cracking with CO or methanol. We work on developing, synthesizing, characterizing, and testing innovative catalysts with a twist of reaction engineering concepts, looking at multi-scale implications.

We delve into the mechanistic insights of a series of in-house synthesized metal-supported heterogeneous catalysts by combining them with dynamic reactors and ab initio calculations. We explore catalysts with promoted lifetime, activity, selectivity, and heat exchange.

We investigate novel reactor designs grounded on forced dynamic (operando) fluidized-bed reactors at high pressures to amplify the kinetic information and hydrogen.

Goals

  • Develop a microkinetic-based modeling framework to analyze the catalyst performance
  • Scale the technical catalyst for its application in demanding exothermic (oxidative coupling of methane using SiC and spray drying) or fluidized-bed (catalytic decomposition of methane) conditions
  • Develop new catalytic concepts based on Ni-alloys (Ni-Fe, -Co, -Zn…)
  • Improve the catalyst structure-function correlations using in-situ, operando, and dynamic techniques and reactors
CHA2023

Related People

Related Publications

Overcoming the kinetic and deactivation limitations of Ni catalyst by alloying it with Zn for the dry reforming of methane

by Velisoju, Virpurwala, Yerrayya, Bai, Davaasuren, Hassine, Yao, Lezcano, Kulkarni, Castaño
J. CO2 Util. Year: 2023 DOI: https://doi.org/10.1016/j.jcou.2023.102573

Abstract

Stimulated by the capacity of Zn to improve the adoption of CO2 and CH4, we doped a Ni-supported ZrO2 catalyst with Zn to enhance its performance and stability in the dry reforming of methane. We prepared a set of catalysts with different Ni:Zn:Zr proportions and conducted extensive ex situ and in situ characterizations to prove that a Ni–Zn alloy was formed at 750 °C under reductive conditions. Combining a tailored morphology of the alloy nanoparticles, strong metal–support (ZnO–ZrO2) interactions, and additional oxygen vacancies created by Zn inclusion resulted in an enhanced catalyst with 15% higher initial activity and higher stability for over 100 h on stream than Zn-free catalyst. Our experimental and modeling results demonstrated that the catalyst with adjusted Ni:Zn:Zr proportion improves the adsorption and reaction rates of CH4 and CO2 while extending its lifetime through enhanced coke precursor gasification compared to its Zn-free counterpart.

Keywords

CHA CO2 HCE