​​

Stable catalyst design for the viable activation of methane to syngas, hydrogen, and chemicals

Problem statement

Methane and light alkanes are surplus species and by-products with relatively poor economic interest. Our goal is to activate C–H σ-bond to produce hydrogen, olefins, carbon monoxide, and carbon nanofibers, following different process strategies such as oxidative coupling (for olefins), CO2 dry reforming (for syngas), cracking or catalytic decomposition (for hydrogen-free of COx and sequestrated carbon nanotubes/nanofibers), cracking/co-cracking with CO or methanol. We work on developing, synthesizing, characterizing, and testing innovative catalysts with a twist of reaction engineering concepts, looking at multi-scale implications.

We delve into the mechanistic insights of a series of in-house synthesized metal-supported heterogeneous catalysts by combining them with dynamic reactors and ab initio calculations. We explore catalysts with promoted lifetime, activity, selectivity, and heat exchange.

We investigate novel reactor designs grounded on forced dynamic (operando) fluidized-bed reactors at high pressures to amplify the kinetic information and hydrogen.

Goals

  • Develop a microkinetic-based modeling framework to analyze the catalyst performance
  • Scale the technical catalyst for its application in demanding exothermic (oxidative coupling of methane using SiC and spray drying) or fluidized-bed (catalytic decomposition of methane) conditions
  • Develop new catalytic concepts based on Ni-alloys (Ni-Fe, -Co, -Zn…)
  • Improve the catalyst structure-function correlations using in-situ, operando, and dynamic techniques and reactors
CHA2023

Related People

Related Publications

Kinetics and Reactor Modeling of the Conversion of n-Pentane using HZSM-5 catalysts with Different Si/Al ratio

by Cordero-Lanzac, Aguayo, Castaño, Bilbao
React. Chem. Eng. Year: 2019

Abstract

The production of olefins and aromatics from n-pentane has been modeled using the experimental results collected in an isothermal packed bed reactor with HZSM-5 zeolite catalysts with different Si/Al ratios (15 and 140) in the temperature range of 400–550 °C. In the first stage, a lump-based kinetic model has been established, evaluating the role of the Si/Al ratio in the kinetic parameters and therefore, in the conversion, product distribution and deactivation by coke. The effect of the catalyst acidity and the reaction conditions has been explained by analyzing the used catalysts by means of N2 and tert-butylamine adsorption–desorption, temperature-programmed oxidation and confocal fluorescence microscopy. In the second stage, the kinetic parameters extracted for both catalysts have been used in simulations of an isothermal packed bed reactor in order to study the evolution of the reaction with the space time and time on stream. Certain suitable conditions (550 °C and 3.5 gcat h molC−1) for maximizing the yield and selectivity to olefins (31 and 51%, respectively, using the zeolite with Si/Al = 140) and aromatics (yield and selectivity of 53%, using the one with Si/Al = 15) in the simulated range were found.

Keywords

CHA MKM