​​

Stable catalyst design for the viable activation of methane to syngas, hydrogen, and chemicals

Problem statement

Methane and light alkanes are surplus species and by-products with relatively poor economic interest. Our goal is to activate C–H σ-bond to produce hydrogen, olefins, carbon monoxide, and carbon nanofibers, following different process strategies such as oxidative coupling (for olefins), CO2 dry reforming (for syngas), cracking or catalytic decomposition (for hydrogen-free of COx and sequestrated carbon nanotubes/nanofibers), cracking/co-cracking with CO or methanol. We work on developing, synthesizing, characterizing, and testing innovative catalysts with a twist of reaction engineering concepts, looking at multi-scale implications.

We delve into the mechanistic insights of a series of in-house synthesized metal-supported heterogeneous catalysts by combining them with dynamic reactors and ab initio calculations. We explore catalysts with promoted lifetime, activity, selectivity, and heat exchange.

We investigate novel reactor designs grounded on forced dynamic (operando) fluidized-bed reactors at high pressures to amplify the kinetic information and hydrogen.

Goals

  • Develop a microkinetic-based modeling framework to analyze the catalyst performance
  • Scale the technical catalyst for its application in demanding exothermic (oxidative coupling of methane using SiC and spray drying) or fluidized-bed (catalytic decomposition of methane) conditions
  • Develop new catalytic concepts based on Ni-alloys (Ni-Fe, -Co, -Zn…)
  • Improve the catalyst structure-function correlations using in-situ, operando, and dynamic techniques and reactors
CHA2023

Related People

Related Publications

Illuminating the Intrinsic Effect of Water Co-feeding on Methane Dehydroaromatization: A Comprehensive Study

by Çaǧlayan, Lucini Paioni, Dereli, Shterk, Hita, Abou-Hamad, Pustovarenko, Emwas, Dikhtiarenko, Castaño, Cavallo, Baldus, Chowdhury, Gascon
ACS Catal. Year: 2021 DOI: https://doi.org/10.1021/acscatal.1c02763

Abstract

Among all catalytic natural gas valorization processes, methane dehydroaromatization (MDA) still has a great potential to be utilized at an industrial level. Although the use of Mo/H-ZSM-5 as an MDA catalyst was first reported almost three decades ago, the process is yet to be industrialized, because of its inherent challenges. In order to improve the overall catalytic performance and lifetime, the co-feeding of water constitutes a promising option, because of its abundance and nontoxicity. Although water’s (limited) positive influence on catalyst lifetime has earlier been exhibited, the exact course of action (like mechanism or the water effect on active sites) is yet to be established. To bridge this knowledge gap, in this work, we have performed an in-depth investigation to elucidate the effects of water co-feeding over a well-dispersed Mo/H-ZSM-5 catalyst by using an array of advanced characterization techniques (nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry–temperature-programmed oxidation/mass spectroscopy (TG-TPO/MS), scanning transmission electron microscopy (STEM), N2 physisorption, Raman spectroscopy, inductively coupled plasma–optical emission spectroscopy (ICP-OES)). Our results demonstrate that the addition of water results in the occurrence of steam reforming (of both coke and methane) in parallel to MDA. Moreover, the presence of water affects the reducibility of Mo sites, as corroborated with computational analysis to examine the state and locality of Mo sites under various water levels and transformation of the catalyst structure during deactivation. We anticipate that our comprehensive study of the structure–function relationship on Mo/H-ZSM-5 under humid MDA conditions will be beneficial for the development of future methane valorization technologies.

Keywords

CHA HCE