​​

Stable catalyst design for the viable activation of methane to syngas, hydrogen, and chemicals

Problem statement

Methane and light alkanes are surplus species and by-products with relatively poor economic interest. Our goal is to activate C–H σ-bond to produce hydrogen, olefins, carbon monoxide, and carbon nanofibers, following different process strategies such as oxidative coupling (for olefins), CO2 dry reforming (for syngas), cracking or catalytic decomposition (for hydrogen-free of COx and sequestrated carbon nanotubes/nanofibers), cracking/co-cracking with CO or methanol. We work on developing, synthesizing, characterizing, and testing innovative catalysts with a twist of reaction engineering concepts, looking at multi-scale implications.

We delve into the mechanistic insights of a series of in-house synthesized metal-supported heterogeneous catalysts by combining them with dynamic reactors and ab initio calculations. We explore catalysts with promoted lifetime, activity, selectivity, and heat exchange.

We investigate novel reactor designs grounded on forced dynamic (operando) fluidized-bed reactors at high pressures to amplify the kinetic information and hydrogen.

Goals

  • Develop a microkinetic-based modeling framework to analyze the catalyst performance
  • Scale the technical catalyst for its application in demanding exothermic (oxidative coupling of methane using SiC and spray drying) or fluidized-bed (catalytic decomposition of methane) conditions
  • Develop new catalytic concepts based on Ni-alloys (Ni-Fe, -Co, -Zn…)
  • Improve the catalyst structure-function correlations using in-situ, operando, and dynamic techniques and reactors
CHA2023

Related People

Related Publications

Effect of the particle blending-shaping method and silicon carbide crystal phase for Mn-Na-W/SiO2-SiC catalyst in oxidative coupling of methane

by Lezcano, Kulkarni, Velisoju, Musteata, Hita, Ramirez, Dikhtiarenko, Gascon, Castaño
Mol. Catal. Year: 2022 DOI: https://doi.org/10.1016/j.mcat.2022.112399

Abstract

Supported Mn-Na-W on silica is a benchmark catalyst for oxidative coupling of methane due to its appropriate ethylene yields. Here we compare eight catalysts with the same active phase (Mn-Na-W) and variable support composition or particle blending-shaping method to evaluate the effect of the support. First, we explore the different preparation methods (impregnation, ball milling, and spray-drying), concluding that spray-drying leads to a promising selective catalyst. Then, we compare different SiC crystal phases (α+β and β), keeping the same composition and shaping method (spray-drying). The catalyst with α+βSiC crystal phase has significantly more activity than the β one in 30 h reaction runs. Finally, we assess the effect of process conditions to improve the yields (15 % at 800°C) of the most promising catalyst: spray-dried and with α+βSiC. The roles of the blending-shaping method and SiC crystal phase are explained by the induced differences in oxidation behavior and active phase distributions.

Keywords

CHA HCE