​​

Process development and deployment for the direct reforming of crude oil to hydrogen and carbon materials

Problem statement

Hydrogen is a clean energy source and carrier because of its non−polluting combustion, making it an excellent alternative to the current fossil fuel-dominated energy scenario. Nonetheless, there are several critical challenges to implementing a broad sustainable use of hydrogen. In this project, we develop a laboratory−scale setup with stable operation and high hydrogen production.

We aim at assessing (i) different hydrocarbon feedstock (from n-heptane to crude oil) fed to the reactor with water as emulsions, carried by steam or vaporized; (ii) steam reforming (SR) and auto thermal reforming (ATR); and (iii) stable and energy efficient catalysts for the efficient production of hydrogen inside packed, fluidized, and multifunctional reactors. These, coupled with carbon capture technologies, minimize the carbon footprint of the overall process.

We support our research with simulations and techno−economic analysis to assess the approach's feasibility. C2H can use the current refinery infrastructure to reduce costs and the impact of market volatility on refinery operations.

Goals

  • Develop and scale up advanced catalysts and reactors for converting crude to hydrogen
  • Model process simulations to analyze the viability of the process 
  • Scaling the technical catalysts for their demanding application: endothermic process, poisoning, massive coke deposition, and fluidized-bed reactors
  • Analyze different process conditions to optimize hydrogen production and stability in the process
C2H-REF2023

Related People

Related Publications

On the dynamics and reversibility of the deactivation of a Rh/CeO2ZrO2 catalyst in raw bio-oil steam reforming

by Remiro, Ochoa, Arandia, Castaño, Gayubo
Int. J. Hydrog. Energy Year: 2019

Abstract

The deactivation mechanism of a commercial Rh/CeO2ZrO2 catalyst in raw bio-oil steam reforming has been studied by relating the evolution with time on stream of the bio-oil conversion and products yields and the physicochemical properties of the deactivated catalyst studied by XRD, TPR, SEM, XPS, TPO and TEM. Moreover, the reversibility of the different deactivation causes has been assessed by comparing the behavior and properties of the catalyst fresh and regenerated (by coke combustion with air). The reactions were carried out in an experimental device with two units in series: a thermal treatment unit (at 500 °C, for separation of pyrolytic lignin) and a fluidized bed reactor (at 700 °C, for the reforming reaction). The results evidence that structural changes (support aging involving partial occlusion of Rh species) are irreversible and occur rapidly, being responsible for a first deactivation period, whereas encapsulating coke deposition (with oxygenates as precursors) is reversible and evolves more slowly, thus being the main cause of the second deactivation period. The deactivation selectively affects the reforming of oxygenates, from least to greatest reactivity. Rh sintering is not a significant deactivation cause at the studied temperature.

Keywords

REF W2C