Process development and deployment for the direct reforming of crude oil to hydrogen and carbon materials

Problem statement

Hydrogen is a clean energy source and carrier because of its non−polluting combustion, making it an excellent alternative to the current fossil fuel-dominated energy scenario. Nonetheless, there are several critical challenges to implementing a broad sustainable use of hydrogen. In this project, we develop a laboratory−scale setup with stable operation and high hydrogen production.

We aim at assessing (i) different hydrocarbon feedstock (from n-heptane to crude oil) fed to the reactor with water as emulsions, carried by steam or vaporized; (ii) steam reforming (SR) and auto thermal reforming (ATR); and (iii) stable and energy efficient catalysts for the efficient production of hydrogen inside packed, fluidized, and multifunctional reactors. These, coupled with carbon capture technologies, minimize the carbon footprint of the overall process.

We support our research with simulations and techno−economic analysis to assess the approach's feasibility. C2H can use the current refinery infrastructure to reduce costs and the impact of market volatility on refinery operations.


  • Develop and scale up advanced catalysts and reactors for converting crude to hydrogen
  • Model process simulations to analyze the viability of the process 
  • Scaling the technical catalysts for their demanding application: endothermic process, poisoning, massive coke deposition, and fluidized-bed reactors
  • Analyze different process conditions to optimize hydrogen production and stability in the process

Related People

Related Publications

Decreasing the coking and deactivation of a reforming Ni-Ce/Al2O3 catalyst with intraparticle SiC in hydrogen production routes

by Tavares, Mohamed, Kulkarni, Morlanes, Castaño
Fuel Year: 2023 DOI: https://doi.org/10.1016/j.fuel.2022.127058


Steam reforming processes are under pressure to fuel the hydrogen economy, cutting its significant carbon footprint and transitioning to renewable feedstock while improving catalyst performance and lifetime. A seemingly inert material such as silicon carbide (SiC, also known as carborundum), introduced in the catalytic particles, significantly influences catalytic performance and particularly the deactivation. We synthesized different catalysts with similar amounts of active materials (20 wt% of Ni and 2 wt% of Ce) and varied the proportion (0 to 78 wt%) and particle size (38 to 112 µm) of SiC within alumina. We used various techniques to characterize the catalysts and test them in reforming heptane, which was employed as a model molecule. The maximum enhancement with SiC occurs using 20 wt% of SiC with a size of 38 µm. Further, the enhancement with SiC is due to the control of the Ni particle size, leading to a 26 % improvement in the apparent reaction rate (per exposed Ni) and a 69 % decline in the deactivation rate compared to the SiC-free counterpart.