​​

Process development and deployment for the direct reforming of crude oil to hydrogen and carbon materials

Problem statement

Hydrogen is a clean energy source and carrier because of its non−polluting combustion, making it an excellent alternative to the current fossil fuel-dominated energy scenario. Nonetheless, there are several critical challenges to implementing a broad sustainable use of hydrogen. In this project, we develop a laboratory−scale setup with stable operation and high hydrogen production.

We aim at assessing (i) different hydrocarbon feedstock (from n-heptane to crude oil) fed to the reactor with water as emulsions, carried by steam or vaporized; (ii) steam reforming (SR) and auto thermal reforming (ATR); and (iii) stable and energy efficient catalysts for the efficient production of hydrogen inside packed, fluidized, and multifunctional reactors. These, coupled with carbon capture technologies, minimize the carbon footprint of the overall process.

We support our research with simulations and techno−economic analysis to assess the approach's feasibility. C2H can use the current refinery infrastructure to reduce costs and the impact of market volatility on refinery operations.

Goals

  • Develop and scale up advanced catalysts and reactors for converting crude to hydrogen
  • Model process simulations to analyze the viability of the process 
  • Scaling the technical catalysts for their demanding application: endothermic process, poisoning, massive coke deposition, and fluidized-bed reactors
  • Analyze different process conditions to optimize hydrogen production and stability in the process
C2H-REF2023

Related People

Related Publications

Deactivation Dynamics of a Ni Supported Catalyst during the Steam Reforming of Volatiles from Waste Polyethylene Pyrolysis

by Ochoa, Barbarias, Artetxe, Gayubo, Olazar, Bilbao, Castaño
Appl. Catal. B: Environ. Year: 2017

Abstract

The valorization of waste high density polyethylene (HDPE) for hydrogen production has been studied in a two-step process, comprising pyrolysis and subsequent steam reforming of the volatiles produced in the first step. Particularly, this work focuses on the deterioration mechanisms (sintering and coke deposition) of the Ni commercial catalyst used in the second step, as it conditions the overall process performance. Pyrolysis of HDPE has been performed in a conical spouted bed reactor at 500 °C, and the catalytic steam reforming of the pyrolysis volatiles, in a fluidized bed reactor at 700 °C. Deactivated catalyst samples were recovered at different values of time on stream, and characterized using XRD, N2 adsorption-desorption, SEM and TEM electronic microscopies, temperature programmed oxidation (TPO), Raman, FTIR and LDI-TOF MS spectroscopies. The results show that the deactivation is due to the sintering and encapsulation -by coke- of Ni. The former is inevitable within the current conditions, and the latter can be ascribed to the condensation of adsorbed precursors that evolve over time. Encapsulating coke is partially carbonized into filamentous coke with lower effect on catalytic deactivation and higher economic interest.

Keywords

REF W2C ANW MKM