​​

Process development and deployment for the direct reforming of crude oil to hydrogen and carbon materials

Problem statement

Hydrogen is a clean energy source and carrier because of its non−polluting combustion, making it an excellent alternative to the current fossil fuel-dominated energy scenario. Nonetheless, there are several critical challenges to implementing a broad sustainable use of hydrogen. In this project, we develop a laboratory−scale setup with stable operation and high hydrogen production.

We aim at assessing (i) different hydrocarbon feedstock (from n-heptane to crude oil) fed to the reactor with water as emulsions, carried by steam or vaporized; (ii) steam reforming (SR) and auto thermal reforming (ATR); and (iii) stable and energy efficient catalysts for the efficient production of hydrogen inside packed, fluidized, and multifunctional reactors. These, coupled with carbon capture technologies, minimize the carbon footprint of the overall process.

We support our research with simulations and techno−economic analysis to assess the approach's feasibility. C2H can use the current refinery infrastructure to reduce costs and the impact of market volatility on refinery operations.

Goals

  • Develop and scale up advanced catalysts and reactors for converting crude to hydrogen
  • Model process simulations to analyze the viability of the process 
  • Scaling the technical catalysts for their demanding application: endothermic process, poisoning, massive coke deposition, and fluidized-bed reactors
  • Analyze different process conditions to optimize hydrogen production and stability in the process
C2H-REF2023

Related People

Related Publications

Coking and Sintering Progress of a Ni Supported Catalyst in the Steam Reforming of Biomass Pyrolysis Volatiles

by Ochoa, Arregi, Amutio, Gayubo, Olazar, Bilbao, Castaño
Appl. Catal. B: Environ. Year: 2018

Abstract

The valorization of biomass (pine wood) for hydrogen production has been studied in a two-step process, comprising pyrolysis and subsequent steam reforming of the volatiles produced in the first step. This work focuses on the deactivation of the Ni commercial catalyst used in the second step. Pyrolysis of biomass has been performed in a conical spouted bed reactor at 500 °C, and the in-line catalytic steam reforming of the pyrolysis volatiles, in a fluidized bed reactor at 600 °C. Deactivated catalyst samples were recovered at different values of time on stream, and analyzed by means of XRD, N2 adsorption-desorption, SEM and TEM microscopies, TPO, Raman and FTIR spectroscopies. The results show that the deactivation is mainly due to the encapsulation of Ni particles by coke, together with Ni sintering, to a lesser extent (from a Ni particle size of 25 nm in the reduced fresh catalyst, to 39 nm at 100 min). The former is ascribed to the condensation of oxygenates (particularly phenols), and the latter is inevitable within the current conditions. As the fraction of uncovered Ni particles decreases with time on stream, the deposition of encapsulating coke is slowed down (from a formation rate of 0.30 mgcoke gcatalyst−1 min−1 to 0.20 mgcoke gcatalyst−1 min−1, at 0–50 min and 50–100 min on stream, respectively), promoting the deposition of coke on the catalyst support (with a formation rate of 1.04 mgcoke gcatalyst−1 min−1 at 50–100 min on stream), with a more carbonized structure and formed through the thermal decomposition of phenols in the reaction medium.

Keywords

REF W2C ANW CRE