​​

Process development and deployment for the direct reforming of crude oil to hydrogen and carbon materials

Problem statement

Hydrogen is a clean energy source and carrier because of its non−polluting combustion, making it an excellent alternative to the current fossil fuel-dominated energy scenario. Nonetheless, there are several critical challenges to implementing a broad sustainable use of hydrogen. In this project, we develop a laboratory−scale setup with stable operation and high hydrogen production.

We aim at assessing (i) different hydrocarbon feedstock (from n-heptane to crude oil) fed to the reactor with water as emulsions, carried by steam or vaporized; (ii) steam reforming (SR) and auto thermal reforming (ATR); and (iii) stable and energy efficient catalysts for the efficient production of hydrogen inside packed, fluidized, and multifunctional reactors. These, coupled with carbon capture technologies, minimize the carbon footprint of the overall process.

We support our research with simulations and techno−economic analysis to assess the approach's feasibility. C2H can use the current refinery infrastructure to reduce costs and the impact of market volatility on refinery operations.

Goals

  • Develop and scale up advanced catalysts and reactors for converting crude to hydrogen
  • Model process simulations to analyze the viability of the process 
  • Scaling the technical catalysts for their demanding application: endothermic process, poisoning, massive coke deposition, and fluidized-bed reactors
  • Analyze different process conditions to optimize hydrogen production and stability in the process
C2H-REF2023

Related People

Related Publications

Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review

by Ochoa, Bilbao, Gayubo, Castaño
Renew. Sustain. Energy Rev. Year: 2020

Abstract

Undoubtedly, hydrogen (H2) is a clean feedstock and energy carrier whose sustainable production should be anticipated. The pyrolysis of biomass or waste plastics and the subsequent reforming over base (transition) or noble metals supported catalysts allows reaching elevated H2 yields. However, the catalyst used in the reforming step undergoes a rapid and severe deactivation by means of a series of physicochemical phenomena, including metal sintering, metallic phase oxidation, thermal degradation of the support and, more notoriously, coke deposition. This review deals with the currently existing alternatives at the catalyst and reactor level to cope with catalyst deactivation and increase process stability, and then delves with the fundamental phenomena occurring during this catalyst deactivation. An emphasis is placed on coke deposition and its influence on deactivation, which depends on its location, chemical nature, morphology, precursors or formation mechanism, among others. We also discuss the challenges for increasing the value of the carbon materials formed and therefore, enhance process viability.

Keywords

REF W2C ANW CRE