​​

Reactor design and optimization for converting crude (and refinery wastes) to chemicals in one step through steam-fluidized catalytic cracking

Problem statement

The direct catalytic cracking from crude oil to chemicals could dominate the petrochemical industry shortly, with less fuel consumption and increasing production of light olefins and aromatics. We aim to simplify the refinery into a unique one-step conversion scheme, targeting the production of the most demanded petrochemicals.

Using a bottom-up holistic approach, we design a catalytic crude-to-chemicals process toward this goal using a bottom-up holistic approach. We investigate advanced reactors with intrinsic kinetic data and controlled hydrodynamics to improve the process. We study the non-linear multiscale phenomena by coupling the hydrodynamics, heat transfer, and reaction kinetics.

We use particle image/tracking velocimetry experiments, kinetic modeling, computational particle fluid dynamic modeling, and optimization approaches to improve operating scenarios and develop innovative reactor prototypes.

We focus on the catalyst, reactor, and process levels for system enhancement and intensification. We are optimizing several state-of-the-art laboratory and pilot-scale units, including a circulating Berty, downer, and multifunctional fluidized bed reactors.

Goals

  • Develop and scale up advanced reactors for converting crude oil to chemicals through fluid catalytic cracking approaching intrinsic kinetics
  • Model process dynamics using reactive particle fluid dynamics coupled with experimental validations
  • Establish a design workflow for short-contact time reactors based on modeling, prototyping, and testing
  • Analyze the novel process developments in fluid catalytic cracking: novel feedstock, process modifications…
C2C-FCC2023

Related People

Related Publications

Polymeric Waste Valorization at a Crossroads: Ten Ways to Bridge Research on Model and Complex/Real Feedstock

by Hita, Sarathy, Castaño
Green Chem. Year: 2021

Abstract

The valorization of polymeric wastes, such as biomass, tires, and plastics, via thermal depolymerization (i.e., pyrolysis or liquefaction) and simultaneous or subsequent catalytic treatment has gained enormous momentum. The inherent hurdles when using complex polymeric wastes or their products as feedstock have led researchers to conclude that obtaining a fundamental kinetic understanding of the catalytic stage is unfeasible. To overcome the issues related to feedstock complexity, the majority of researchers have decided to use representative model compounds or probe molecules (i.e., surrogates). Two separate mainstreams have emerged in this field: one focusing on the fundamental kinetic understanding of model molecules and the other focused on studying real feedstock. We aimed to merge these approaches to utilize and acknowledge their potential and drawbacks. Therefore, herein, we provide ten recommendations for exploiting the existing synergies between the two approaches. This manuscript first contextualizes our proposed recommendations with a short overview on the thermocatalytic valorization field for polymeric waste, the complex compositions of reactants and products, the progress made in the individual fields of model and real feedstock, comparisons of both feedstock types, and some previous history on hydrocarbon conversion. Subsequently, we present guidelines for a truly cooperative and synergetic research effort.

Keywords

FCC REF HPC W2C ANW