​​

Reactor design and optimization for converting crude (and refinery wastes) to chemicals in one step through steam-fluidized catalytic cracking

Problem statement

The direct catalytic cracking from crude oil to chemicals could dominate the petrochemical industry shortly, with less fuel consumption and increasing production of light olefins and aromatics. We aim to simplify the refinery into a unique one-step conversion scheme, targeting the production of the most demanded petrochemicals.

Using a bottom-up holistic approach, we design a catalytic crude-to-chemicals process toward this goal using a bottom-up holistic approach. We investigate advanced reactors with intrinsic kinetic data and controlled hydrodynamics to improve the process. We study the non-linear multiscale phenomena by coupling the hydrodynamics, heat transfer, and reaction kinetics.

We use particle image/tracking velocimetry experiments, kinetic modeling, computational particle fluid dynamic modeling, and optimization approaches to improve operating scenarios and develop innovative reactor prototypes.

We focus on the catalyst, reactor, and process levels for system enhancement and intensification. We are optimizing several state-of-the-art laboratory and pilot-scale units, including a circulating Berty, downer, and multifunctional fluidized bed reactors.

Goals

  • Develop and scale up advanced reactors for converting crude oil to chemicals through fluid catalytic cracking approaching intrinsic kinetics
  • Model process dynamics using reactive particle fluid dynamics coupled with experimental validations
  • Establish a design workflow for short-contact time reactors based on modeling, prototyping, and testing
  • Analyze the novel process developments in fluid catalytic cracking: novel feedstock, process modifications…
C2C-FCC2023

Related People

Related Publications

Kinetic Modelling of Methylcyclohexane Ring-Opening over a HZSM-5 Zeolite Catalyst

by Castaño, Gayubo, Pawelec, Fierro, Arandes
Chem. Eng. J. Year: 2008

Abstract

A kinetic model is proposed in order to quantify product distribution in the ring-opening (using high hydrogen concentration in the reaction medium) of methylcyclohexane (MCH) over a catalyst based on HZSM-5 zeolite. The model is based on a reaction scheme proposed by Cerqueira et al. for methylcyclohexane cracking at atmospheric pressure, which has been modified in order to include the effect of hydrogen over the individual reaction steps. The experimental results used for estimating the kinetic constant were obtained in a fixed bed isothermal reactor in a wide range of conditions, i.e. 250–450 °C; WHSV = 0.5–10.5 h−1 (τ = 0.095–2 gcat h gMCH−1); pressure = 5–80 bar; H2/MCH molar flow ratio = 4–79; conversion = 0–100%. The kinetic model proposed can be regarded as a basis for the proposal of models for ring-opening reactions of more complex naphthenic feedstock from a prior hydrogenation step involving aromatic refinery streams of secondary interest.

Keywords

FCC HPC MKM