​​

Reactor design and optimization for converting crude (and refinery wastes) to chemicals in one step through steam-fluidized catalytic cracking

Problem statement

The direct catalytic cracking from crude oil to chemicals could dominate the petrochemical industry shortly, with less fuel consumption and increasing production of light olefins and aromatics. We aim to simplify the refinery into a unique one-step conversion scheme, targeting the production of the most demanded petrochemicals.

Using a bottom-up holistic approach, we design a catalytic crude-to-chemicals process toward this goal using a bottom-up holistic approach. We investigate advanced reactors with intrinsic kinetic data and controlled hydrodynamics to improve the process. We study the non-linear multiscale phenomena by coupling the hydrodynamics, heat transfer, and reaction kinetics.

We use particle image/tracking velocimetry experiments, kinetic modeling, computational particle fluid dynamic modeling, and optimization approaches to improve operating scenarios and develop innovative reactor prototypes.

We focus on the catalyst, reactor, and process levels for system enhancement and intensification. We are optimizing several state-of-the-art laboratory and pilot-scale units, including a circulating Berty, downer, and multifunctional fluidized bed reactors.

Goals

  • Develop and scale up advanced reactors for converting crude oil to chemicals through fluid catalytic cracking approaching intrinsic kinetics
  • Model process dynamics using reactive particle fluid dynamics coupled with experimental validations
  • Establish a design workflow for short-contact time reactors based on modeling, prototyping, and testing
  • Analyze the novel process developments in fluid catalytic cracking: novel feedstock, process modifications…
C2C-FCC2023

Related People

Related Publications

Hydrodynamic Characteristics of an Internal Recycle Berty Catalytic Reactor in Batch/Continuous or Packed/Fluidized Bed Modes

by Cui, Kulkarni, Wagner, Berger-Karin, Nagy, Castaño
ACS Eng. Au Year: 2022 DOI: https://doi.org/10.1021/acsengineeringau.1c00026

Abstract

Berty-type internal recycle reactors offer great opportunities for screening catalysts and reproducing catalytic reacting conditions in multiple processes, thus approaching industrial reactions while amplifying kinetic information. However, the rational design of these reactors requires a deeper understanding of their governing hydrodynamics and equations so that they can be better utilized in batch or continuous mode or as packed or fluidized beds. In this work, by adopting a slice model to represent a three-dimensional symmetric geometry with porous zone settings for catalyst beds, coupled with a species transport model, multiple reference frame, and SST k–ω turbulence model, we developed a computational fluid dynamic simulation strategy of a commercial Berty reactor manufactured by Integrated Lab Solutions (ILS). We conducted experiments to validate the proposed modeling approach under continuous packed bed operations, through which the hydrodynamic behaviors with packed/fluidized beds under the batch mode were also investigated by studying the influences of the transient injection, bed porosities, and rotation rates. As a result, we reported a set of equations to assess the bed velocity and contact time under different porosities, which simplified the performance improvements while replacing the need to perform complex simulations or conduct costly experiments. On the grounds of these hydrodynamic simulations and under various operating conditions, we discussed the pertinence of these instruments for intrinsic kinetic measurements in the batch/continuous or packed/fluidized bed operational modes.

Keywords

C2C FCC MKM CRE