​​

Reactor design and optimization for converting crude (and refinery wastes) to chemicals in one step through steam-fluidized catalytic cracking

Problem statement

The direct catalytic cracking from crude oil to chemicals could dominate the petrochemical industry shortly, with less fuel consumption and increasing production of light olefins and aromatics. We aim to simplify the refinery into a unique one-step conversion scheme, targeting the production of the most demanded petrochemicals.

Using a bottom-up holistic approach, we design a catalytic crude-to-chemicals process toward this goal using a bottom-up holistic approach. We investigate advanced reactors with intrinsic kinetic data and controlled hydrodynamics to improve the process. We study the non-linear multiscale phenomena by coupling the hydrodynamics, heat transfer, and reaction kinetics.

We use particle image/tracking velocimetry experiments, kinetic modeling, computational particle fluid dynamic modeling, and optimization approaches to improve operating scenarios and develop innovative reactor prototypes.

We focus on the catalyst, reactor, and process levels for system enhancement and intensification. We are optimizing several state-of-the-art laboratory and pilot-scale units, including a circulating Berty, downer, and multifunctional fluidized bed reactors.

Goals

  • Develop and scale up advanced reactors for converting crude oil to chemicals through fluid catalytic cracking approaching intrinsic kinetics
  • Model process dynamics using reactive particle fluid dynamics coupled with experimental validations
  • Establish a design workflow for short-contact time reactors based on modeling, prototyping, and testing
  • Analyze the novel process developments in fluid catalytic cracking: novel feedstock, process modifications…
C2C-FCC2023

Related People

Related Publications

Effect of Hydrogen on the Cracking Mechanisms of Cycloalkanes over Zeolites

by Castaño, Arandes, Olazar, Bilbao, Pawelec, Sedran
Catal. Today Year: 2010

Abstract

Hydrocracking of secondary interest refinery streams (high aromatic content) can yield valuable products for transportation and petrochemical industry. In order to promote the hydrogenation and cracking steps, a bifunctional catalyst (metal + acid function) is required. We have studied the effect of the operating conditions on cycloalkane (product of aromatic hydrogenation) ring opening over a monofunctional HZSM-5 zeolite, by focusing on the effect of hydrogen in the cracking mechanisms. Methylcyclohexane has been selected as the test reactant and the conditions used corresponds to temperature, 250–450 °C; space velocity, 0.7–1.1 h−1; pressure, 2–80 bar; hydrogen/methylcyclohexane molar ratio, 1–79; conversion, 0–100% (integral reactor). At these conditions the zeolite catalyses hydrogenation as well as cracking (bifunctional capabilities), thus the cracking mechanisms are directly affected by hydrogen as products (alkenes) and intermediates (carbenium ions) are saturated. The overall effect of rising hydrogen partial pressure is an enhancement of (hydro)isomerization and monomolecular cracking, that is, an increase of the yield/selectivity of methane, ethane, penthane and isoalkanes.

Keywords

FCC HPC MKM