​​

Reactor design and optimization for converting crude (and refinery wastes) to chemicals in one step through steam-fluidized catalytic cracking

Problem statement

The direct catalytic cracking from crude oil to chemicals could dominate the petrochemical industry shortly, with less fuel consumption and increasing production of light olefins and aromatics. We aim to simplify the refinery into a unique one-step conversion scheme, targeting the production of the most demanded petrochemicals.

Using a bottom-up holistic approach, we design a catalytic crude-to-chemicals process toward this goal using a bottom-up holistic approach. We investigate advanced reactors with intrinsic kinetic data and controlled hydrodynamics to improve the process. We study the non-linear multiscale phenomena by coupling the hydrodynamics, heat transfer, and reaction kinetics.

We use particle image/tracking velocimetry experiments, kinetic modeling, computational particle fluid dynamic modeling, and optimization approaches to improve operating scenarios and develop innovative reactor prototypes.

We focus on the catalyst, reactor, and process levels for system enhancement and intensification. We are optimizing several state-of-the-art laboratory and pilot-scale units, including a circulating Berty, downer, and multifunctional fluidized bed reactors.

Goals

  • Develop and scale up advanced reactors for converting crude oil to chemicals through fluid catalytic cracking approaching intrinsic kinetics
  • Model process dynamics using reactive particle fluid dynamics coupled with experimental validations
  • Establish a design workflow for short-contact time reactors based on modeling, prototyping, and testing
  • Analyze the novel process developments in fluid catalytic cracking: novel feedstock, process modifications…
C2C-FCC2023

Related People

Related Publications

Dual Coke Deactivation Pathways during the Catalytic Cracking of Raw Bio-Oil and Vacuum Gasoil in FCC Conditions

by Ibarra, Veloso, Bilbao, Arandes, Castaño
Appl. Catal. B: Environ. Year: 2016

Extra Information

Open Access.

Abstract

Coke deposition pathways have been studied during the fluid catalytic cracking of bio-oil, vacuum gasoil (VGO) and a blend of the previous two (80 wt% VGO and 20 wt% bio-oil), under realistic riser conditions of the fluid catalytic cracking (FCC) unit, using a commercial catalyst at 500 °C and contact times of 1.5–10 s. Amount and composition of soluble and insoluble coke in dichloromethane have been analyzed using a set of techniques (TPO, FTIR, 13C NMR, XPS, Raman, GC–MS and MALDI-TOF MS, among others). The relationship of coke deposition with its composition and the reaction medium has allowed us to set two pathways of coke formation: (i) heavy hydrocarbon pathway tend to form ordered polycondensed aromatic nanostructures; whereas (ii) oxygenate pathway tend to form a lighter fraction of coke containing oxygen, less ordered and more aliphatic coke. A synergy between the two pathways have been verified due to the lower coke deposition of the blend compared to the individual components, and this has been explained in terms of (i) attenuation of the heavy hydrocarbon pathway caused by the steam contained or originated from the bio-oil, and (ii) the hydride transfer from hydrocarbons to the precursors of the oxygenate pathway.

Keywords

O2H FCC W2C MKM