​​

Modeling and scaling processes to generate high-pressure hydrogen (H2) from ammonia

Problem statement

The increasing world energy demand accelerates the depletion of fossil fuels, which consequently boosts the research and development of alternative and viable energy sources. Ammonia (NH3) is a dense, carbon-free energy and hydrogen vector. It can provide on-site hydrogen via catalytic decomposition or cracking.

Our work covers the fundamentals of the microkinetics (using benchmark catalysts such as Ru-based and cheaper, novel alternatives such as Co-Ba-Ce-based) to the reactor modeling.

We use DFT-guided and microkinetic modeling to help understand the rates and catalyst performance. Whereas the reactor modeling from the laboratory scale to the industrial-scale mandates considering the heat-mass transfer effects for efficient implementation of the process.

Goals

  • Develop a microkinetic modeling framework to analyze the catalyst performance and the effect of the role of promoters
  • Dimensionless number analysis to transcend the scale of operation and scale up
  • Using reactive computational fluid dynamics and process modeling: model and simulate an ammonia cracker unit at different scales, including a repurposed steam reformer
  • Model and simulate different reactor configurations, such as packed bed reactors with and without membranes
AMD

Related People

Related Publications

High purity, self-sustained, pressurized hydrogen production from ammonia in a catalytic membrane reactor

by Cerrillo, Morlanes, Kulkarni, Realpe, Ramirez, Katikaneni, Paglieri, Lee, Harale, Solami, Jamal, Sarathy, Castaño, Gascon
Chem. Eng. J. Year: 2022 DOI: https://doi.org/10.1016/j.cej.2021.134310

Abstract

The combination of catalytic decomposition of ammonia and in situ separation of hydrogen holds great promise for the use of ammonia as a clean energy carrier. However, finding the optimal catalyst – membrane pair and operation conditions have proved challenging. Here, we demonstrate that cobalt-based catalysts for ammonia decomposition can be efficiently used together with a Pd-Au based membrane to produce high purity hydrogen at elevated pressure. Compared to a conventional packed bed reactor, the membrane reactor offers several operational advantages that result in energetic and economic benefits. The robustness and durability of the combined system has been demonstrated for>1000 h on stream, yielding a very pure hydrogen stream (>99.97 % H2) and recovery (>90 %). When considering the required hydrogen compression for storage/utilization and environmental issues, the combined system offers the additional advantage of production of hydrogen at moderate pressures along with full ammonia conversion. Altogether, our results demonstrate the possibility of deploying high pressure (350 bar) hydrogen generators from ammonia with H2 efficiencies of circa 75% without any external energy input and/or derived CO2 emissions.

Keywords

AMD MKM CRE